第5章 ディジタル・マルチメータによるキ ルヒホッフの実験

5.1 目的

ディジタル・マルチメータをもちいて、キルヒホッフの法則を測定する。この実験より電気 回路の基本を習得する。

5.2 理論

5.2.1 キルヒホッフの第一法則

電気回路の任意の接続点に流入する電流 I_i(A) の代数和は零である。

$$\sum_{i=1}^{i=n} I_i = 0 (5.1)$$

5.2.2 キルヒホッフの第二法則

閉じた電気回路において、その中にある抵抗 $R_i(\Omega)$ と電流 $I_i(A)$ の積の代数和はその閉回路にある起電力 $e_i(V)$ の代数和となる。

$$\sum_{i=1}^{i=ne} e_i = \sum_{i=1}^{i=ni} R_i \times I_i$$
 (5.2)

5.3 方法

ここでは、閉回路内の起電力が1個の場合のキルヒホッフの第二法則を、直列回路と2種類の並列回路の合わせて3種類の回路について実験する。

抵抗 R_{11} と R_{21} は $100(\Omega)$ ~ $900(\Omega)$ を R_{12} と R_{22} は $1K(\Omega)$ ~ $9K(\Omega)$ を選択する。ただし、抵抗値 R_{11} 、 R_{12} 、 R_{21} および R_{22} は、同一の班内で、同じ値にならないように各自で相談し決定する。

各抵抗の抵抗値と端子電圧の測定は、各自のデジタルマルチメータを使用する。

この実験は、各自がそれぞれ上記の3種類の実験を行う。

同一の実験台に同班の人が複数居ますが、各自が測定した値は各自が結果として報告する。

5.3.1 直列回路の測定

測定は、次の手順である。

- 1. 図 5.1 において抵抗 R₁₁ と R₁₂ を接続する。
- 2. 抵抗 R₁₁ と抵抗 R₁₂ の抵抗値を測定する。
- 3. 電源 E で閉回路を構成 $(E \setminus P_1 \setminus P_2 \setminus P_3 \setminus P_4 \setminus P_5 \setminus P_6 \setminus P_7$ による閉回路) するように接続して抵抗 R_{11} の端子電圧 $V_{11}(V)$ と抵抗 R_{12} の端子電圧 $V_{12}(V)$ 、および電流 I(A) を測定する。
- 4. 抵抗 R₂₁ と R₂₂ は接続し無い状態とする。

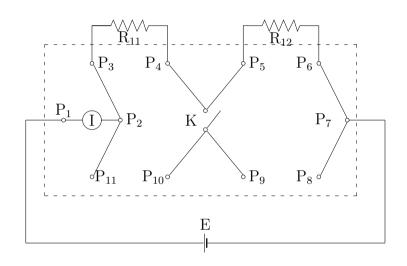


図 5.1: 直列回路1の結線図

E: 直流電源 I: 電流計 K: スィッチ

R:抵抗 P:端子

5.3.2 並列回路1の測定

測定は、次の手順である。

- 1. 図 5.2 において抵抗 R₁₁、R₂₁、R₂₁、および R₂₂ を接続する。
- 2. 抵抗 R_{11} 、抵抗 R_{12} 、抵抗 R_{21} 、および抵抗 R_{22} の抵抗値を測定する。
- 3. 電源 E を P_1 と P_7 間に接続して抵抗 R_{11} の端子電圧 $V_{11}(V)$ 、抵抗 R_{12} の端子電圧 $V_{12}(V)$ 、抵抗 R_{21} の端子電圧 $V_{21}(V)$ 、抵抗 R_{22} の端子電圧 $V_{22}(V)$ 、および電流 I(A) を測定する。 ただし、スィッチ K は開いた状態とする。

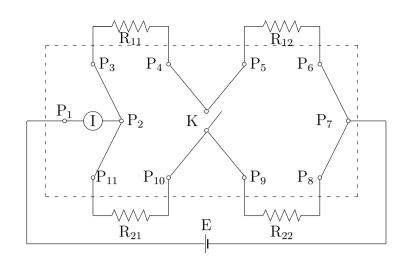


図 5.2: 並列回路1の結線図

E: 直流電源 I: 電流計 K: スィッチ

R : 抵抗 P : 端子

測定は、次の手順である。

1. $extbf{Q}$ 5.2 において抵抗 R_{11} 、 R_{21} 、 R_{21} 、および R_{22} を接続する。

- 2. 抵抗 R_{11} 、抵抗 R_{12} 、抵抗 R_{21} 、および抵抗 R_{22} の抵抗値を測定する。
- 3. 電源 E を P_1 と P_7 間に接続して抵抗 R_{11} の端子電圧 $V_{11}(V)$ 、抵抗 R_{12} の端子電圧 $V_{12}(V)$ 、抵抗 R_{21} の端子電圧 $V_{21}(V)$ 、抵抗 R_{22} の端子電圧 $V_{22}(V)$ 、および電流 I(A) を測定する。 ただし、スィッチ K は開いた状態とする。

5.3.3 並列回路2の測定

測定は、次の手順である。

- 1. 図 5.3 において抵抗 R₁₁、R₁₂、R₂₁、および R₂₂ を接続する。
- 2. 抵抗 R_{11} 、抵抗 R_{12} 、抵抗 R_{21} 、および抵抗 R_{22} の抵抗値を測定する。
- 3. 電源 E を P_1 と P_7 間に接続してスィッチ K を閉じた状態とする。
- 4. 抵抗 R_{11} の端子電圧 $V_{11}(V)$ 、抵抗 R_{12} 端子電圧 $V_{12}(V)$ 、および電流 I(A) を測定する。

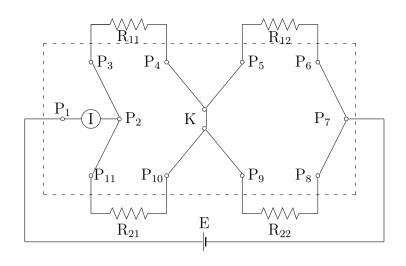


図 5.3: 並列回路 2 の結線図

E: 直流電源 I: 電流計 K: スィッチ

R : 抵抗 P : 端子

5.4 結果

測定結果の整理には、表計算プログラムを用い、処理結果のプリントアウトを報告書に添付しても良い。

ただし、平均値は実験目的に従い必要と思われる箇所を求める。

5.4.1 直列回路の測定結果

端子電圧 $V_{S1}(V)$ は

$$V_{S1} = V_{11} + V_{12} (5.3)$$

である。

直流電源電圧Eと端子電圧 V_{S1} の差 $d_{S1}(\%)$ は

$$d_{S1} = \frac{V_{S1} - E}{E} \times 100 \tag{5.4}$$

である。

	カラーコード表示	カラーコード抵抗値 (Ω)
抵抗 R ₁₁		
抵抗 R ₁₂		

直流電源	電流	抵抗	端子電圧	抵抗	端子電圧	端子電圧	電圧差	
$\mathrm{E}(\mathrm{V})$	I(A)	$R_{11}(\Omega)$	$V_{11}(V)$	$R_{12}(\Omega)$	$V_{12}(V)$	$V_{S1}(V)$	$\mathrm{d}_{S1}(\%)$	
平 均								

5.4.2 並列回路1の測定結果

端子電圧 $V_{P1}(V)$ と端子電圧 $V_{P2}(V)$ は

$$V_{P1} = V_{11} + V_{12} (5.5)$$

$$V_{P2} = V_{21} + V_{22} (5.6)$$

である。

直流電源電圧 E と端子電圧 V_{P1} の差 $d_{P1}(\%)$ 、直流電源電圧 E と端子電圧 V_{P2} の差 $d_{P2}(\%)$ は

$$d_{P1} = \frac{V_{P1} - E}{E} \times 100 \tag{5.7}$$

$$d_{P2} = \frac{V_{P2} - E}{E} \times 100 \tag{5.8}$$

である。

	カラーコード表示	カラーコード抵抗値 (Ω)
抵抗 R ₁₁		
抵抗 R ₁₂		
抵抗 R ₂₁		
抵抗 R ₂₂		

Ī	直流電源 (F/V)	電流	抵抗	端子電圧	抵抗	端子電圧 V ₁₂ (V)	端子電圧	電圧差
	E(V)	I(A)	$R_{11}(\Omega)$	V ₁₁ (V)	$R_{12}(\Omega)$	$V_{12}(V)$	V _{P1} (V)	$d_{P1}(\%)$
1		 	! 	 		! 	 	
7	区 均							

	直流電源	電流	抵抗	端子電圧	抵抗	端子電圧	端子電圧	電圧差
	E(V)	I(A)	$R_{21}(\Omega)$	V ₂₁ (V)	$R_{22}(\Omega)$	V ₂₂ (V)	V _{P2} (V)	$d_{P2}(\%)$
1		l I	I I	<u> </u>	l I	I I	l I	
}	平均							

5.4.3 並列回路2の測定結果

端子電圧 $V_{PS}(V)$ は

$$V_{PS} = V_{11} + V_{12} \tag{5.9}$$

である。

直流電源電圧Eと端子電圧 V_{S1} の差 $d_{S1}(\%)$ は

$$d_{PS} = \frac{V_{PS} - E}{E} \times 100 \tag{5.10}$$

である。

	カラーコード表示	カラーコード抵抗値 (Ω)
抵抗 R ₁₁		
抵抗 R ₁₂		
抵抗 R ₂₁		
抵抗 R ₂₂		

直流電源	電流	抵抗	端子電圧	抵抗	端子電圧	端子電圧	電圧差
E(V)	I(A)	$R_{11}(\Omega)$	$V_{11}(V)$	$R_{12}(\Omega)$	$V_{12}(V)$	$V_{PS}(V)$	$\mathrm{d}_{PS}(\%)$
							'
平均							

5.5 注意

デジタル・マルチメータで測定できる電流は、0.4(A)(デジタル・マルチメータ 組立・取扱説明書3ページ参照)なので、破損しないように注意する。

5.6 問題

図 5.1 において、端子 P_1 と端子 P_7 間の電圧 V_{17} 、端子 P_2 と端子 P_7 間の電圧 V_{27} を測定する。電圧 V_{17} と電圧 V_{27} の違いがなぜ発生するかを調べる。

5.7 実験装置·規格

5.7.1 直流電源の使い方

図 5.1、図 5.2 および図 5.3 での直流電源 E の使い方は、26 ページ 2.7.1.2-B の「直流電源の使い方」を参照する。