第6章 交流回路のベクトル軌跡の実験

Experiment of Vector Locus for AC Circuit

6.1 目的

RL および RC の直列回路における電圧、電流のベクトル図を描き、位相の概念を習得する。

6.2 理論

6.2.1 RL 直列回賂

図 6.1 のように RL の直列回路に交流電圧 V を加えると、流れる電流 I は電圧 V より位相が $\varphi=\tan^{-1}(\omega L/R)$ だけ遅れる。また抵抗 R および I より クタンス L の電圧降下をそれぞれ I および I とすれば、I とすれば、I と同相であり、I は電流 I より位相が I だけ進み、I とのベクトル和は端子電圧 I に等しい。

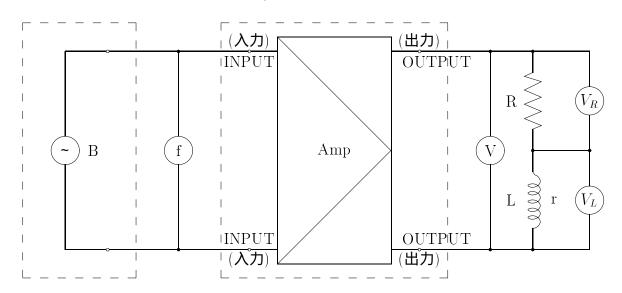


図 6.1: RL 直列回路結線図

V:ディジタルマルチメータ B:低周波発振器 f:周波数計 r:内部抵抗(未知)

 V_R : ディジタルマルチメータ R : 抵抗器 L : インダクタンス V_L : ディジタルマルチメータ Amp: TAKASAGO POWER SUPPLY

いま R を一定にして、L を変化した場合を考える。図 6.2 に示すように、L = 0 のときは、 $V = V_R$ となり、このときの電流は電圧と同相で、 $I_0 = V / R$ となる。L を次第に増加すると、 V_L も増加して同図の AB を直径とする円周上を A 点から B 点に向って移動し、電流 I は L の増加に伴い減少しながら、 V_R とともに円弧を描いて B 点に向う。

次に L を一定にして、R を変化した場合を考える。図 6.3 に示すように、R = 0 のときは、電流は電圧より位相が $\pi/2$ だけ遅れて、 I_0 = $V/\omega L$ となる。R を次第に増加すると、 V_R も増加して同図の AB を直径とする円周上を B 点から A 点に向って移動し、電流 I も円弧を描いて B 点に向う。

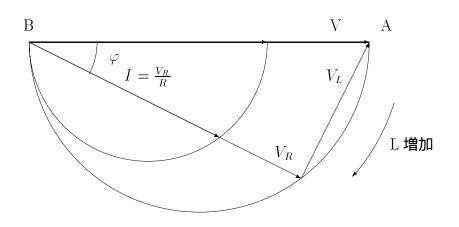


図 6.2: RL 直列回路で R が一定の時の特性

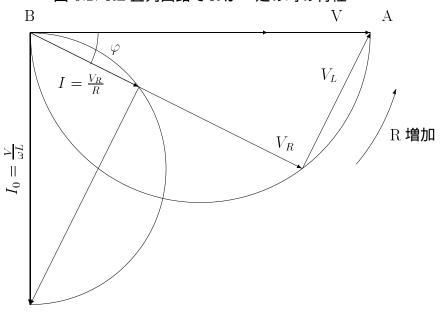


図 6.3: RL 直列回路で L が一定の時の特性

6.2.2 RC 直列回路

図 6.4 のように RC の直列回路に交流電圧 V を加えると、電流 I は電圧 V より位相が $\varphi=\tan^{-1}\{1/(\omega CR)\}$ だけ進む。また R および C の電圧降下をそれぞれ V_R および V_C とすると、 V_R は電流 I と同相であり、 V_C は位相が $\pi/2$ だけ遅れ、 V_R と V_C とのベクトル和は端子電圧 V に等しい。

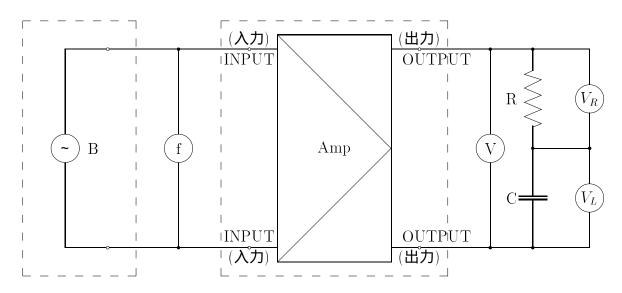


図 6.4: RC 直列回路結線図

V: ディジタルマルチメータ B: 低周波発振器 f: 周波数計 V_R : ディジタルマルチメータ R: 抵抗器 C: コンデンサ

 V_C : ディジタルマルチメータ Amp: TAKASAGO POWER SUPPLY

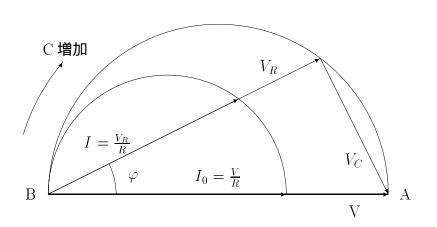


図 6.5: RC 直列回路結で R が一定の時の特性

いま R を一定にして C を変化すると、図 6.5 に示すように、C=0 のときは、回路は開いた状態であるから、電流は零である。C を次第に増加すると、 V_C は減少して同図の円周上を B 点から A 点に向う。また C のときは、C は短絡した状態であるから、 $V_C=0$ となり、電流は $I_0=V$ / R となって、電流 I の軌跡も円周になる。次に、C を一定にして R を変化すると、図

6.6 に示すように、R = 0 のときは、電流は電圧より位相が $\pi/2$ だけ進み、 $I_0 = \omega CV$ のようになる。R を次第に増加すると、 V_R も増加して同図の円周上をたどり、電流もまた円弧を描く。

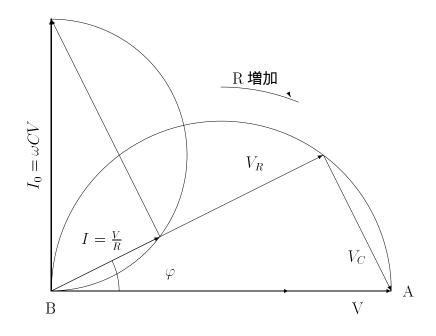


図 6.6: RC 直列回路で C が一定の時の特性

6.3 方法

電源電圧Vを一定値(f=500Hz、V=5V)に保って測定する。

6.3.1 RL 直列回路でLを変化

R、L を図6.1 のように直列接統して、R を一定にして、L を変化させ、電流I および電圧 V_R 、 V_L を測定する。

6.3.2 RL 直列回路で R を変化

R、L を図 6.1 のように直列接統して、L を一定にして R を変化させ、電流 I および電圧 V_R 、 V_L を測定する。

6.3.3 RC 直列回路で C を変化

R、C を図6.4 のように直列接続して、R を一定にして、C を変化させ、電流 I および電圧 V_R 、 V_C を測定する。

6.3.4 RC 直列回路で R を変化

R、C を図 6.4 のように直列接続して、C を一定にして R を変化させ、電流 I および電圧 V_R 、 V_C を測定する。

6.4 結果

6.4.1 RL 直列回路

横軸に電圧と電流のメモリを書き、縦軸にも電圧と電流のメモリを書く。このとき、R および L を可変としたときのおのおのの電圧、電流のベクトル軌跡を描く。

電源電圧	抵抗	インダクタ	電流	抵抗端子	インダクタンス		
V(V)	$\mathrm{R}(\Omega_{})$	ンスL(mH)	I(A)	電圧 $V_R(V)$	端子電圧 $V_L(\mathrm{V})$		
一定							

6.4.2 RC 直列回路

横軸に電圧と電流のメモリを書き、縦軸にも電圧と電流のメモリを書く。このとき、R および C を可変としたときのおのおのの電圧、電流のベクトル軌跡を描く。

電源電圧	抵抗	キャパシタ	電流	抵抗端子	キャパシタンス
V(V)	$\mathrm{R}(\Omega_{})$	ンス $C(\mu F)$	I(A)	電圧 $V_R(V)$	端子電圧 $V_C(\mathrm{V})$
一定					

6.5 注意

- 1. 図 6.2、図 6.3、図 6.5、図 6.6 のベクトル図には X 軸と Y 軸のメモリが省略されているので、結果のベクトル図には、電圧の縦軸と横軸、電流の縦軸と横軸を作り、それぞれの軸に目盛りを記入する。
- 2.1枚のグラフ用紙には1つのベクトル図を記入する。
- 3. 測定の時に図 6.1 と図 6.4 の抵抗 R の値は零にしない。

6.6 問題

実測の結果、電圧、電流のベクトル軌跡が正確に半円周にならない理由を述べよ。